On the Structure of $\mathrm{Tl}_{2} \mathrm{GeTe}_{5}{ }^{\mathbf{1}}$

RICHARD E. MARSH
Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125

Received March 21, 1990

As part of a study on the ternary system $\mathrm{Tl}-\mathrm{Ge}-\mathrm{Te}, \mathrm{Abba}-\mathrm{Toure}$ et al. (1) have recently described the synthesis and crystal structure of $\mathrm{Tl}_{2} \mathrm{GeTe}_{5}$. The authors noted that the crystals appeared to show tetragonal symmetry, with possible space groups $P 4_{2} b c$ or $P 4_{2} / m b c$, but they were apparently unable to derive a satisfactory tetragonal structure and instead described the structure in a doubled orthorhombic cell, space group $C m m m$, with $a=b=11.657(5) \AA, c$ $=14.917(5) \AA$.

The Cmmm structure can, in fact, be de-scribed-without significant shifts in atom positions-in the tetragonal space group $P 4 /$ $m b m$. As noted in Ref. (1), the tetragonal cell $(a=8.243, c=14.917 \AA)$ is defined by the orthorhombic lattice vectors $\left(\frac{1}{2}, \frac{1}{2}, 0\right)$, ($\left.-\frac{1}{2}, \frac{1}{2}, 0\right),(0,0,1)$; the corresponding coordinate transformations are $x^{\prime}=x+y, y^{\prime}$ $=-x+y+0.5, z^{\prime}=z$, where the translation of 0.5 in y is necessary to place the origin at a conventional center of symmetry in $P 4 / \mathrm{mbm}$. After averaging over equivalent atoms, the coordinates in Table I result. The coordinate shifts necessary to satisfy the

[^0]higher symmetry of $P 4 / \mathrm{mbm}$ were, on the average, appreciably smaller than the e.s.d.'s given in Table IV of Ref. (1); the maximum shifts, of about 2 e.s.d.'s, involved the z coordinates of $\mathrm{Te}(2)$ and $\mathrm{Te}(3)$. The anisotropic coefficients $U_{i j}$ showed equally satisfactory agreement with the symmetry requirements of $P 4 / \mathrm{mbm}$.
There remains a puzzling question concerning systematic absences. As noted earlier, the original authors (1) first noted that the space group might be $P 4_{2} b c$ or $\mathrm{P4}_{2} / m b c$. The corresponding systematic absences would be $0 k l$ with k odd (and $h 0 l$ with h odd) and also $h h l$ with l odd; the first set of absences is satisfied by the revised space group $P 4 / \mathrm{mbm}$, but the second set is not. Indeed, structure-factor calculations based on the revised model (Table I) showed that many intensities in this secondary cate-gory-including several $00 l$'s with l odd, which are extinguished by a 4_{2} axis-would be expected to be large. (Calculations based on the orthorhombic, Cmmm model are, of course, nearly identical. While this space group does not carry any systematic absences other than those related to the C centering, reflections $h h l$ with h odd all were calculated as very weak, corresponding to

TABLE I
Coordinates, Space Group $P 4 / m b m$, with e.s.d's (in Parentheses) as Estimated from the Values in Table IV of ref. (1).

Atom	Site	x	y	z
$\mathrm{Tl}(1)$	$4(e)$	0.5	0.5	$0.1256(3)$
$\mathrm{Tl}(2)$	$4(e)$	0.5	0.5	$0.3810(2)$
$\mathrm{Te}(1,8)$	$4(g)$	$0.1912(5)$	0.6912	0.0
$\mathrm{Te}(2,3)$	$4(f)$	0.5	0.0	$0.8732(6)$
$\mathrm{Te}(4,5)$	$8(k)$	$0.1827(4)$	0.6827	$0.2792(3)$
$\mathrm{Te}(6,7)$	$4(h)$	$0.3325(5)$	0.8325	0.5
$\mathrm{Ge}(1,2)$	$4(f)$	0.0	0.5	$0.3810(7)$

Cell dimensions: $a=8.243(4) \AA, c=14.917(5) \AA$.
the b-glide in $P 4 / \mathrm{mbm}$, while those of the types $h 0 l$ or 0 kl with l odd calculated to have approximately the same values-sometimes large-as given by the $P 4 / \mathrm{mbm}$ model for the $h h l$'s with l odd.) In other words, if the arrangement of atoms proposed in Ref. (1) is correct-as seems clearly indicated by the final R value of 0.077 -the systematic absences were not consistent with space groups $P 4_{2} b c$ or $P 4_{2} / m b c$, but they are consistent with $P 4 / \mathrm{mbm}$. Unfortunately, the original intensity data, needed for a further check on the situation, apparently are not available; however, it seems likely that this confusion over systematic absences might have been responsible for the original au-
thors' failure to find a satisfactory tetragonal model.

In view of the small shifts in the atom positions, the structure-including the interatomic distances-remains effectively unchanged; only the description is changed.

Acknowledgments

I am grateful to W. P. Schaefer and V. Schomaker for their helpful suggestions.

Reference

1. A. Abba-Toure, G. Kra, R. Eholie, J. OlivierFourcade, J.-C. Jumas, and M. Maurin, J. Solid State Chem. 84, 245 (1990).

[^0]: ${ }^{1}$ Contribution No. 8119 from the Arthur Amos Noyes Laboratory.

